

PCB 3043L

Principles of Ecology Lab

College of Arts & Sciences, Integrative Biology

Topic	Learning Outcomes
Methods in Ecology I: Science Communication Methods in Ecology II: Data Analysis	 Characterize the key components of the scientific method in a peer- reviewed article (e.g., hypotheses, methodology, main findings). Communicate these key components to a non-scientific audience by using Interpretation. Generate and test scientific hypotheses based on provided ecological background information and data. Analyze provided datasets utilizing descriptive statistics for center and spread. Construct at least two figures and at least one table that are clear and readable.
Coping with Environmental Variation	 Identify ways organisms cope with variation in their physical environment. Describe a physiological tolerance curve. Estimate the tolerance limit of red mangrove seedlings to tidal inundation. Describe biological responses of red mangrove seedlings along an inundation gradient. Explain how frequency of inundation shapes tidal wetland plant communities.
Evolution & Adaptation	 Describe how organisms in a population adapt to their environment through natural selection. Differentiate between the mechanisms of evolutionary change and how they each alter allele frequency in a population. Analyze data related to evolutionary change in a population. Apply the concepts of evolution and adaptation to understand the implications of global threats such as climate change.
Population Growth	 Identify density-dependent and density-independent factors influencing <i>Gopherus polyphemus</i> (Gopher tortoises) during different age classes. Generate and test scientific hypotheses based on provided ecological background information and data Analyze provided data utilizing descriptive statistics and figures that relate to your generated hypotheses.

Population	1. Differentiate between r and k life history strategies including the
Demography	benefits and disadvantages of each.
Demography	2. Construct survivorship and reproduction tables based on provided
	demographic information
	3. Estimate and describe life history features including net reproductive rate and intrinsic rate of increase
	 Test hypotheses to determine how environmental conditions may affect plant life histories and present their results to one of their peers
Spatial	
Spatial Dispersion	 Describe the three types of species distributions that organisms can exhibit and infer the abiotic and biotic interactions that may influence
Dispersion	why species exhibit each distribution type.
	2. Calculate the spatial distribution of an example species, the southern
	live oak, using different field-sampling techniques and matching
	statistical analyses.
	3. Determine how spatial scale influences dispersion patterns when
	using field-sampling techniques and spatial analysis tools.
Species	1. Identify and describe different types of species interactions.
Interactions	 Explain how species interactions affect population demography.
Interactions	3. Predict how species interactions could alter community structure
	through both direct and indirect effects
Community	1. Describe key concepts like ecological succession and the intermediate
Ecology Part I	disturbance hypothesis
0, 1	2. Explain how environmental gradients and disturbance patterns
	influence plant community structure/succession
	3. Evaluate how sampling procedures influence measurements of plant
	community structure.
Community	1. Explain how environmental gradients and disturbance patterns
Ecology Part II	influence plant community structure and biodiversity.
	2. Recognize the two aspects of species diversity and use both species
	richness and abundance data to calculate diversity indices.
	3. Describe how scale influences observations of species richness.
Ecosystems	4. Identify key terminology about ecosystem and restoration ecology.
Ecology	5. Determine how long it takes tidal wetlands in Tampa Bay to mirror
	natural sites in terms of their ecosystem structure and function using
	statistical analyses in Excel.
	6. Make informed recommendations as to the value of tidal wetland
	restoration.